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Abstract

The two-way coupled particle-laden jet is studied numerically in order to understand how the addition of
solid particles affects the stability of the jet. In contrast with the particle-laden mixing layer studied, the jet
flow stability is complicated by a variable wave (or phase) velocity and an additional curvature parameter,
i.e., the ratio of jet radius to shear layer thickness. Nevertheless, we have demonstrated that the following
similar scenario holds for a particle-laden jet: the addition of particles can destabilize the flow at small
particle Stokes number, while the stabilizing effect prevails for intermediate to large Stokes numbers. Both
these competing effects scale approximately linearly with the particle mass loading. We also found that the
addition of particles increases the wave velocity at high wave numbers but decreases the wave velocity at
low wave numbers. The fact that the addition of particles can destabilize the gas flow in the absence of
gravity has been shown to follow the previous speculation. Two general asymptotic relations proposed by
Saffman have been confirmed numerically for the case of the particle-laden jet. Physically, the increase of
effective inertia of the fluid—particle mixture causes a destabilization effect while the enhanced viscous
dissipation around the particles gives a stabilization effect. Results for various mass loadings, Stokes
numbers, and wave numbers show that for a given mass loading and wave number, there is an intermediate
Stokes number that corresponds to a maximum flow stability. We have shown that this Stokes number is on
the order of 1 and depends weakly on the wave number. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Particle-laden jet flows are commonly found in engineering applications ranging from jet
propulsion, spray combustion, spray coating, and pulverized coal combustion. The mixing of
small solid particles or liquid droplets with the gas phase determines the efficiency and stability of
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the particular process, e.g., droplet vaporization and mixing or contaminant removal. In these and
other examples it is desirable to achieve a specific particle concentration profile. Therefore, the
ability to predict and control particle dispersion in jet flow and other free shear flows is important
to developing and improving designs of industrial equipment.

The evolution of the single-phase jet at high Reynolds number has been thoroughly studied in
the past (e.g., Liu, 1989; Monkewitz and Pfizenmaier, 1991; Martin and Meiburg, 1991; Brancher
et al., 1994). However, there are only a few studies on particle-laden jet flows, most of which
address the problem of particle transport under the one-way coupling assumption (Chung and
Troutt, 1988; Crowe et al., 1988, 1993; Hansell et al., 1992; Longmire and Eaton, 1992; Eaton and
Fessler, 1994; Uthuppan et al., 1994; Aggarwal and Uthuppan, 1999; Glaze and Frankel, 2000).
These studies have established that the effect of the large-scale structures on particle dispersion
can be characterized in terms of the particle Stokes number, S¢, which is defined as the ratio of the
particle aerodynamic response time to the timescale of the large-scale fluid motion (Crowe et al.,
1988, 1993). Large-scale structures such as jet vortex rings can significantly influence the dis-
persion and mixing of particles in the jet if the Stokes number is on the order of 1.

Moderate mass loadings of particles can also alter the fluid flow, which is known as flow
modulation (or turbulence modulation if the carrier flow is turbulent). In gas—solid flows, the
particulate volume fraction may be low due to small particle sizes, but the mass loading can be on
the order of 1 because of the high particle to fluid density ratio. In this case, the particles can
significantly change the carrier flow characteristics, but particle—particle interactions may be ne-
glected (Elghobashi, 1994). This two-way coupling regime is of concern in this study. Turbulence
or flow modulation by particles has been known for several decades. The issue of whether tur-
bulence in the carrier flow is enhanced or reduced by the dispersed particles has been the subject of
experimental studies (e.g., Gore and Crowe, 1989, 1991; Hetsroni, 1989), theoretical model de-
velopment (Yuan and Michaelides, 1992; Yarin and Hetsroni, 1994; Crowe et al., 1997), and
direct numerical simulations (Squires and Eaton, 1990; Elghobashi and Truesdell, 1993; Tong and
Wang, 1999).

Shear flows usually develop from linear instabilities and as such the study of instability of the
particle-laden jet would be the first step towards a better understanding of two-way coupled
evolution of a two-phase jet. Studies of instability of particle-laden shear flows have primarily
focused on the inviscid mixing layer (Michael, 1965; Yang et al., 1990; Wen and Evans, 1994;
Dimas and Kiger, 1998) with limited study of the viscous mixing layer (Saffman, 1962; Tong and
Wang, 1999). Instability studies of the particle-laden jet have been limited to the inviscid case
(Sykes and Lyell, 1994; Parthasarathy, 1995). Sykes and Lyell (1994) studied the spatial stability
of an inviscid two-phase circular jet and found the particles to have a stabilizing effect. The spatial
growth rate was found to decrease for both the axisymmetric and first azimuthal modes. They also
found that, for both perturbation modes, the addition of particles increased the phase velocity of
the perturbation above the most amplified frequency. Below this frequency the addition of par-
ticles decreased the phase velocity. Parthasarathy (1995) studied both the spatial and temporal
stabilities of the circular particle-laden jet. The axisymmetric and first azimuthal modes were
investigated. The temporal stability analysis of a particle-laden top-hat jet indicated that particles
decreased the wave amplification but increased the wave velocity, with both effects increasing with
particle loading. The spatial stability analysis showed that the presence of particles decreased the
amplification rate at all frequencies. The phase velocity of the particle-laden flow disturbances was
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smaller than that of the single-phase flow at low frequencies. At frequencies higher than the single-
phase maximum-amplified frequency, the phase velocity of the particle-laden flow disturbance
was higher.

In this paper, we investigate the temporal stability of a viscous, two-way coupled particle-laden,
axisymmetric jet flow. A finite difference direct numerical simulation code was used to determine
the temporal growth rate of the imposed disturbance. This study extends the work of Tong and
Wang (1999) on the two-way coupled particle-laden mixing layer. The instability characteristics of
the jet are compared to that of the mixing layer, as a way of validating our numerical method. The
asymptotic behaviors proposed by Saffman (1962) were shown to hold for the jet flow in this
study. The paper is organized as follows: in Section 2, we present the mathematical formulation
and theoretical predictions; the numerical method is described in Section 3; and numerical results
are discussed and compared with theories in Section 4.

2. Theory

We consider an axisymmetric gas jet shear layer with solid particles in which the volume
fraction of the particulate phase is very low, as such effects of particle concentrations on con-
tinuous phase viscosity are small. The particles are uniform in size with diameter much smaller
than any characteristic length scales in the base gas flow. The particle density is much larger than
that of the gas (p,/pr > 1) so that the bulk mass loading of the particulate phase is on the order
of 1. As such, the flow modulation by the particles may be significant. Also because of the large
density ratio, effects of virtual mass, Basset histoy forces, etc., can be neglected. The particle
Reynolds numbers are in the Stokes flow region so that linear Stokes drag is assumed, as in the
previous studies of Saffman (1962), Parthasarathy (1995), and Tong and Wang (1999). The
dimensional governing equations for the carrier gas (subscript f) and the particulate phase
(subscript p) of the axisymmetric jet are

V-u=0, (1)
%+u.vu:pifvp_3n5fnd(u—v)+vV2u, (2)
SV () =0, 2
g+v-VV:plf;(u—v), (4)

where u = (u,,u,) is the gas velocity, v = (v,, v,) is the particle velocity, P is the gas pressure, p; is
the gas density, and p, is the particle velocity. The momentum coupling is described by the term
(3nund)/ps(u — v), where n is the particle number density and d is the particle diameter, x4 and v
are the gas dynamic and kinematic viscosity, respectively. The particle local volume fraction, ¢, is
related to the number density as € = nnd>/6.
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The above mathematical formulation, known as the continuum approach, is identical to that
proposed in Saffman (1962) paper. Although the validity of the continuum approach for larger St
numbers may be questionable for non-linear particle-laden shear layers in general (e.g., Slater and
Young, 1998), the problems associated with the continuum approach are not present at the linear
growth stage. We believe that the Eulerian approach gives consistent results in the limit of small
mass loading, as long as the problem of linear instability is concerned. For further discussions, the
reader is referred to the work of Slater and Young (1998).

The governing equations are now non-dimensionalized using the velocity of the gas at the
centerline of the jet, Uy, the radius of the jet core, ry, and an average particle volume fraction, ¢.
The non-dimensional equations for the gas and particulate phase become

V-u=0, (5)
N e ©)
CAV (@) =0, 7
%—l—v-Vv:[u;tv], (8)

where the same symbols are used to denote the corresponding non-dimensional variables. The
flow Reynolds number, Re, is defined as r Uy /v. In the flow momentum coupling term, Z is the
average particle mass loading (Z = €p,/p); the Stokes number, St, represents the ratio of the
particle response time (7, = ,opaf2 /18vp;) to flow characteristic time (t¢ = ro/Uy). We note that an
alternative definition for the flow characteristic time is t¢ = 6/U,, where ¢ is the vorticity thickness
of the initial jet shear layer (6 = Up/(dU~/dr)|,_, ) with U*(r) being the jet mean velocity profile.
Therefore, St* = 7,/t} = St * ry/0. Here 1,/ is an important parameter that measures the cur-
vature effect on the jet flow.

Perhaps a more relevant flow characteristic time would be based on the dominant frequency
associated with the jet instability (Aggarwal, 1994; Aggarwal and Uthuppan, 1999), namely,
2 = 2/U, = 2nry/(Uyn), where o and 1 are the instability wave number and wavelength, re-
spectively; U, is the phase velocity. For the most unstable axisymmetric instability wave, o ~ 2.2
and U, =~ 0.6U,. Therefore, 2 ~= 4.767;. The Stokes number defined based on 12 would then be
about 21% the value of the Stokes number used in this paper.

The dimensionless mean velocity profile of the gas phase is assumed to be

Ur) = U;(:):%{I.O—i—tanh {%(1.0_@]}. )

This profile was used in the previous studies of the single-phase axisymmetric jet (e.g., Michalke,
1984; Brancher et al., 1994). For the purpose of comparing our results with those of Tong and
Wang (1999), we also used the following mean flow profile

U(r):%{I.O—l—erf[\/ﬁr—;(l.O—r)”. (10)

This profile was only used for the results to be discussed in Figs. 2 and 3.
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The particles were initially distributed uniformly throughout the flow [e(x,z = 0) = 1] with the
initial particulate mean velocity equal to the fluid mean velocity. This assumption of dynamic
equilibrium was used in the previous studies by Saffman (1962), Yang et al. (1990) and Tong and
Wang (1999). The perturbation was taken to be periodic in the streamwise (z) direction and was
unbounded in the radial direction with vanishing velocity perturbation at infinity. A finite dif-
ference method, presented in Section 3, was developed to solve the governing equations.

In this paper, we consider the temporal instability of an axisymmetric jet flow. Noting that
experimental jet flows should be studied as a spatially developing problem (e.g., Huerre and
Monkewitz, 1985), the observations to be made in this paper should only be valid qualitatively
when considering a spatially evolving, viscous, particle-laden jet flow.

The system of equations (5)—(8) are linearized using perturbations of the form Be!*“=<) where o
is the perturbation wave number; ¢ is the complex phase velocity; and B is p(r), i,.(r), u.(r), 0,(r),
0.(r) or €(r), the eigenfunction for pressure, fluid radial or axial velocity, particulate radial or axial
velocity or particulate volume fraction, respectively. Assuming that the perturbation stream
function for the gas flow is of the form ¢(r) e *c=<), the Orr-Sommerfeld equation for a particle-
laden, axisymmetric jet flow is found to be

1 ? 1
[Dz --D- ocz} ¢ = iocRe[(H —¢) (132 —-D~— a2> ¢ — $D*u + ? pa : (11)
r r r
where D = d/dr and, as was shown by Saffman (1962), the usual mean flow U(r) is replaced by a

complex mean flow, #u(r), in the presence of particles,

o Z(U —¢)
u(r) = Ulr) + 1 +ia(U—c)St

Comparing Eq. (11) with the Orr—Sommerfeld equation for a particle-laden plane mixing layer
flow derived by Saffman (1962),

[D* — 2] = iaRe[(u — ¢)(D* — &) — D], (13)

(12)

where now D = d/dy, we see that Eq. (11) correctly approaches that of the plane shear layer as the
ratio ry/d — oo since the mean flow shear occurs mainly in the region 1 —d/ry <r < 1+ d/rp.
The mixing layer is a 4-parameter system, 7 (Re, o, St, Z), while the jet is a 5-parameter system,
F (Re,a,St,Z,ry/0). We will compare results for the two shear flows in Section 4.

For given initial mean velocity profiles, Eq. (11) represents an eigenvalue problem involving five
governing parameters. The growth rate of a temporal instability mode, ¢ = ac;, is a function of the
flow Reynolds number, Re, perturbation wave number, o, particle inertial parameter, St¢, particle
mass loading, Z, and the curvature parameter, r/J:

O'ZU(R@,O(,%,SI‘,Z), (14)
where ¢; is the imaginary part of ¢. This compares to the growth rate, gy for a single-phase jet,
which is only a function of Re, «, and ry/0:

aozao(Re,oc,%). (15)
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The real part of ¢ is the phase (or wave) velocity, which, unlike that of the plane mixing layer
investigated by Tong and Wang (1999), will be non-zero and vary with the system parameters.
Since Eq. (7) is linear in ¢, the perturbation field of the particle concentration can be determined, a
posteriori, in terms of the eigenfunctions of the velocity fields.

Saffman (1962) made two important observations regarding the asymptotic solutions in terms
of St. For the case of very fine particles, or St < 1, Saffman used a leading-order solution for the
particle velocity field to show that the effect of the fine particles is equivalent to increasing the
density of the mixture, and thus an increase of the flow Reynolds number by a factor of (1 +Z). A
relation between the growth rate in particle-laden jet, o, and that of the clean gas jet, o, therefore
exists:

a(oc,Re,%o,Z,St < 1) zao[a,Ree:Re(l—i-Z),%]. (16)
In this case, the addition of particles destabilizes the flow, since the growth rate of a singe-phase
jet was shown to increase with Re (Michalke, 1984). This asymptotic relation implies a prediction
of the two-phase instability in terms of single-phase instability in the limit of St < 1. This relation
was confirmed for the viscous plane mixing layer by Tong and Wang (1999). We will compare this
relation with numerical results for the viscous axisymmetric jet in Section 4.

In the limit of very large particle inertia, or St>> 1, Saffman found that u(r) =
U(r) —iZ/(a- St) from Eq. (12). Eq. (11) can then be written in the same format as the single-
phase Orr—Sommerfeld equation if ¢; + Z/(o - St) is viewed as ¢; in the single-phase flow. Then

ro

ro VA
Re, )
a(oc, e

7.5t 1) - ( Re,0) 2 17
> ap |\ o, Ke 5 St ( )
which indicates that the growth rate decreases linearly with the loading for large St. We will

confirm this numerically for the viscous jet in Section 4.

3. Numerical method

Normally, the Orr—Sommerfeld equation is solved numerically to obtain the growth rate and
eigenfunctions of linear instability modes (e.g., Dimas and Kiger, 1998). Alternatively, they can be
extracted from a numerical code designed to solve the full non-linear equations (5)—(8). The
numerical scheme for the jet flow and the procedure for calculating linear instability are described
here.

A finite difference code was developed to solve the three-dimensional, non-linear equations of
motion for the carrier fluid and particulate phase. The finite difference code solved the governing
equations in cylindrical coordinates using a staggered grid and fractional step method described
by Kim and Moin (1985). Following the method of Rai and Moin (1991), a third-order Runge—
Kutta method was used for the non-linear terms while the second-order Crank—Nicolson method
was used for the linear (viscous) terms. The novel cylindrical coordinate formulation of Verzicco
and Orlandi (1996) was used to handle the singularities at » = 0. The Poisson solver for the
pressure equation used Fourier series expansions in the streamwise direction. This makes the
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Poisson solver very efficient, but the periodic boundary condition in the streamwise direction
currently limits the code to the solution of the temporally evolving jet.

Following Verzicco and Orlandi (1996), we replaced the primitive variables of the carrier flow,
u=[u, uZ]T, with the modified variables q = [g,, qZ]T, where ¢, = ru, and ¢. = u.. In the staggered
grid formulation, g, is identically 0 at the axis and the terms with 1/r, 1/7%, and 1/ in them can
be properly defined near » = 0 when the momentum equations are written in the form given in the
following. The carrier flow continuity equation, in the modified variables becomes

0q, 0q. B

o oz 0 (18)
and the carrier fluid momentum equations become

qu _ ap 1 0 1 a‘JV az% qr — Qr

D~ or ke [r©r<r o ) T o2 ze St (19)

Dq. op 1]10 0q. d’q, q. — 0.

Dt—‘aw—e[m(%r T T s (20)
with

Dq, _0q. 0 (q\ | 9(grq:)

Dt:at+§<7 % (D)
and

Dq. dq. 103(q.q.) 0q?
q_q+_(qq)+qz

Dt ot r Or oz

The particle momentum and continuity equations were written in a similar manner, with the
modified variables O, = rv, and Q. = v..

Using the third-order Runge-Kutta and second-order Crank—Nicolson scheme, the interme-
diate velocity value of the fractional step method is calculated from

(¢ +4))
2

(22)

- !

q4i — 4;
At

= |y, H! + p,HT' — o %ip + (4, + 4i2) + oS8!, (23)

where H; contains the convective terms and those viscous terms with a single velocity derivative;
%, A;,, and A4;, denote discrete, second-order central differential relations for the pressure and
viscous terms, respectively; and y, p, and o are the Runge-Kutta coefficients. The force coupling
term is treated as a source term, S/. An approximate factorization method is used to reduce the
problem to one of solving two tri-diagonal systems of equations:

(1 =B4i)(1 — Bi4i-)Aqi = At [VzHil + PlHiFI - szgipl + oy (4, "‘Aiz)‘]il + O‘lSil]v (24)

where A = ¢ — ¢! and B, = o;At/2. Continuity is enforced to obtain the velocity at the next time
step by

qu+1 — 6/]\1 = —M]Atgidsprl, (25)

where % is the gradient operator and @ is a scalar field calculated from
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1
Lo =+ —— 94 26
o At € ( )
where ¥ and 2 represent the discrete Laplacian and divergence operators, respectively. The
pressure is calculated from
At
S N S (e PPt 27
pPU=p+ ( > Re > (27)
After the fluid velocity was advanced in each Runge—Kutta step, the particulate momentum and
continuity equations were solved in a similar manner, except that the pressure correction substep
was not needed.
For the linear instability study, we first decomposed the velocity and particle volumetric
concentration fields into the mean and disturbance fields:

o= (utn) 40 (a) L)) &
= (1) 10 (0 Tie )¢ @)

e=1+A@)[r(r) +ié(r)) e, (30)

where the subscripts R and I denote the real and imaginary parts of the eigenfunctions, respec-
tively, and A(¢) denotes the perturbation amplitude.

To determine the initial eigenfunctions to be used, the stream function representation for the
perturbation field of the carrier flow was used to ensure incompressibility

¥(r,z) = Re[¢(r)e'™] = ¢r(r) cos oz — ¢\ (r) sin oz, (31)
where ¢(r) = ¢r(r) +1¢;(r). The following initial forms of ¢(r) were used:
Ao

= 32

O cosh’ 21 —=r) (32)
Ay sinh 2 (1 —r)

(,151 = 3 r02 : (33)
cosh” 2 (1 —r)

From the stream function, the initial velocity field in the modified variables are
1 .
q-=U(r) — . [P cos oz — ¢y sin oz, (34)
g, = —opyg Sin oz — oy cos oz, (35)

where the primes in Eq. (34) now denote differentiation with respect to r.

The flow was advanced in time with the perturbation amplitude, A(¢), kept below 1%
throughout the simulation to ensure linear instability behavior. The updated eigenfunctions were
then used to specify the initial flow for the next iteration. This iteration procedure continued until
all the eigenfunctions converged and A4(¢) varied exponentially with time.
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The exponential growth rate of the perturbation field was computed as

In [A”:A” }

A(t=0)
og=————=. 36
A7 (36)
The growth rate remains the same for new iterations once the eigenfunctions converge. The time
development of the perturbation amplitude at the converged stage, under different mass loadings,

is shown in Fig. 1 on a log-linear plot, with the slope being the growth rate, 4.

4. Results
4.1. Comparison with mixing layer: the curvature effect

The effect of the parameter ry/0 on the jet instability was studied first to examine the curvature
effect. Comparisons with the mixing layer results of Tong and Wang (1999) in the limit of large
ro/0 also serve as a validation tool for the jet flow code. In the mixing layer case, the only length
scale is the shear layer thickness, which was taken to be the vorticity thickness, d. Recognizing
that the velocity scale used in the mixing layer is AU /2 (AU is the velocity jump across the shear
layer) and that different length scales exist, the parameters defined in this paper are related to
those in Tong and Wang (1999), denoted by the ‘mix’ subscript, as follows:

Re = 2(%)Remix, St = 2(%)Stmix, 7= Ty 0= (%)amix. (37)

We shall compare with the mixing layer results at Repmix = 250, Stmix = 1.0, Znx = 1.0, and
omix = 0.862. With these parameters given, Eq. (37) was used to determine the parameters used for

6—o loading 0.0
---------- loading 0.1
- -~ loading 0.3
loading 0.5

— — loading 0.7
— - — loading 0.9
e—e |oading 1.0

In(A)

0.0 0.5 1.0 1.5 2.0
time

Fig. 1. Time development of perturbation amplitude at converged stage (x=2.0, Re =500, St=1.0, and
ro/0 = 2.825).
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the jet case once the curvature parameter, ry/0, was chosen. We varied ry/0 from 2 to 32 and as
such the wave number, «, varied from 1.724 to 27.58. Fig. 2 shows the dimensionless growth rate
divided by the curvature parameter, o/(ry/d) = omix/2, versus the curvature parameter, ry/0,
along with the growth rate for the mixing layer. We expect that the growth rate for the jet in the
limit of large ry/0 be the same as the mixing layer. Fig. 2 shows that the curvature significantly
affects the growth rate only for /0 < 4. The maximum difference between the two growth rates is
about 6% for ry/0 > 5, which may be caused by the finite domain size in the simulation. Fig. 3
shows the same comparison for the single-phase case. The jet growth rate approaches the mixing
layer value a little slower than the particle-laden case but has reached the asymptote by ry/0 = 8.
The maximum difference between the two growth rates is about 4% for r,/d > 8. In summary, the
curvature effect reduces the growth rate and suppresses the flow instability, as shown, for example,
in the work of Martin and Meiburg (1991).

4.2. Reynolds number

We focused our study on the effects of «, Sz, and Z, with the understanding that the flow
Reynolds number, Re, only modifies slightly the growth rate if Re is larger than, say, 1000. In Fig.
4, the variation of growth rate and phase velocity as a function of Reynolds number for the single-
phase jet and a particle-laden jet are shown. The results were obtained by the numerical solution
of Egs. (18)—(20) along with that of appropriate particle equations, as explained in Section 3. The
growth rate increases with Reynolds number quickly when Re < 1000 and gradually approaches
the asymptotic value when Re is further increased. When Re = 10,000, the growth rate for the
single-phase jet is 0.428, which is close to the inviscid growth rate of 0.449 (P.J. Morris, Private
communication, see also Morris, 1976). The phase velocity decreases slightly from 0.628 at
Re =100 to 0.613 at Re = 10,000, almost independent of Reynolds number. A similar variation
of the growth rate and phase velocity was found for the particle-laden jet. The effect of particles,

0.08

o—o Jet
0.07 - - - Mixing Layer

0.06 - 1

0.05

0.04 -

0.03

0.02 |-

0.01

L ! L . ! !
0 5 10 15 20 25 30 35
/8

Fig. 2. Comparison of jet and mixing layer growth rates for particle-laden jet, Z = 1.0.
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o—o Jet
- - - Mixing Layer
0.2 g
© 0.15 b
0.1 - B
0.05 L 1 1 1 1 i 1
0 5 10 15 20 25 30 35

/3

Fig. 3. Comparison of jet and mixing layer growth rates for single-phase jet.

at Z = 1.0 and St = 1.0, is to reduce the growth rate and increase the phase velocity. Since we are
mainly interested in the effects of particle parameters on the flow instability, in the remaining
sections we set 79/ = 2.825 and Re = 500.

4.3. Effects of mass loading and Stokes number

The growth rate as a function of the particle mass loading for four different Stokes numbers
and o« = 2.0 is shown in Fig. 5. The single-phase growth rate is also shown in the figure. For large
Stokes number (St = 10), the growth rate decreases linearly with increasing Z with a slope of
about 1/8t, as predicted by Saffman (1962). The dependence on loading is not linear for the small
and intermediate Stokes numbers. For the smallest Stokes number (St = 0.01), the growth rate is
shown to be higher than that for a single-phase flow, increasing slowly with loading. In this case
the addition of particles actually destabilizes the flow, as predicted by Saffman (1962). For a given
o and Z, the flow is most stable for St on the order of 1, due to the most effective fluid-to-particle
interphase energy transfer as discussed in Tong and Wang (1999). The gas flow gives away energy
to the particulate phase, leading to a slower instability growth of the jet.

Fig. 6 shows the growth rate and phase velocity as a function of wave number for St = 1 and
three loadings. The addition of particles always has a stabilizing effect at this Stokes number and
the stabilizing effect is shown to increase with loading. There is a most unstable wave number at
each loading, with the most unstable wave number decreasing with increasing loading. This in-
dicates that heavy loading will lead to roll-up at longer wavelength. The phase velocity shows the
largest variation with wave number, particularly at small wave numbers. The long-wave pertur-
bations propagate at close to jet center velocity, while short-wave perturbations may travel at
about 60% of the jet velocity. The loading seems to decrease the phase velocity of long-wave
perturbations but increase that of short-wave perturbations, in agreement with the results of
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Fig. 4. Growth rate (a) and phase velocity (b) of single-phase and particle-laden (Z = 1.0, St = 1.0) jet versus Reynolds
number (other parameters are o = 2.0 and ry/é = 2.825).

Sykes and Lyell (1994) and Parthasarathy, 1995). In general, the phase velocity did not vary much
with the other parameters (i.e., St, Z) and will not be included in subsequent plots.

The growth rate as a function of wave number with a fixed mass loading (Z = 1.0) but different
particle inertial parameters is shown in Fig. 7. The single-phase, or one-way coupling, case is also
shown in the figure. The destabilization effect at small Stokes number (St = 0.01) is again illus-
trated, since the growth rate for this case is always higher than the one-way coupling case. The
most unstable wave number is in the range 2.0-2.5, except for St = 1.0, which is about 1.5. For a
spatially evolving jet, our results of Figs. 6 and 7 would imply that the most unstable frequency
decreases with increasing loading, but almost independent of the Stokes number. The particles
with Stokes number on the order 1 are again found to have the strongest stabilization effect on the
flow. This effect is better illustrated by plotting the same data as a function of Sz, as shown in Fig.
8. In Fig. 9, the growth rate for « = 1.0 and 2.0 are shown in more detail, along with the single-
phase growth rate for each wave number. In addition to showing the highest level of stabilization
at a Stokes number on the order of 1, it can also be seen that the particles start destabilizing the
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Fig. 6. Growth rate (a) and phase velocity (b) as a function of wavenumber at different mass loading (Re = 500,
St =1.0, and ry/d = 2.825).
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Fig. 8. Growth rate as a function of Stokes number at different wavenumbers (Re = 500, Z = 1.0, and r(/d = 2.825).

flow at a Stokes number of about 0.1 and below. The growth rate of the particle-laden flow
approaches that of the single-phase flow for very high Stokes number. The results shown in Figs.
4-9 are very similar to the results for the mixing layer shown by Tong and Wang (1999).

So far we have focused on the amplification rate of flow instability. The linear instability ei-
genfunctions can be used to give a qualitative description of the flow structure and particle—fluid
interaction, as shown in Fig. 10, where the perturbed gas vorticity field, the particle velocity di-
vergence, and perturbation concentration fields are presented. The large-scale roll-up vortex,
similar to the single-phase jet, will be formed at the center of the domain as the shear layer is
broadened. The particulate velocity field is not divergence free but has a positive divergence in the
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Fig. 9. Growth rate as a function of Stokes number for « = 1.0 and 2.0 (Re = 500, Z = 1.0, and r,/J = 2.825).

vortex center and negative divergence in the braid regions, leading to the depletion of particles in
the core and accumulation of particles in the braid regions. This preferential accumulation is
known for one-way coupled flow, but appears to be qualitatively similar in the two-way coupled
case. The level of accumulation is expected to be reduced in the two-way coupled case as the
growth rate is significantly reduced for St on the order of 1.

4.4. Comparison with Saffman’s asymptotic results

We now compare the numerical results with Saffman’s asymptotic prediction at large St, Eq.
(17). This result is shown in Fig. 11 for wave numbers 1.0 and 2.0. There is very good agreement
when St is on the order of 100. Agreement is also better for large «, as the flow timescale based on
the wavelength is decreased.

The comparison of the numerical results with Saffman’s prediction at the small St limit
(St = 0.01) is shown in Fig. 12. Accurate numerical growth rates are harder to obtain because
smaller time steps must be used. However, the destabilizing effect is confirmed and approximately
follows the predicted dependence on the mass loading from Eq. (16). The effect of Eq. (16) is
better illustrated in Fig. 13. The three horizontal lines represent the single-phase flow growth rates
at the indicated Reynolds numbers. For a loading of 1.0, the particle-laden growth rate ap-
proaches that for a single-phase flow at Re = 1000 and for a loading of 3.0, it approaches the
single-phase growth rate for a Re = 2000 [Re. = (1 + Z)Re]. The cross-over of the curves with
respect to the oy (Re = 500) horizontal line in Fig. 13 shows that particles with St < 0.08 show
destabilizing effect while particles with St > 0.08 give stabilizing influence for the loadings in-
vestigated. The cross-over point is the point where the destabilization effect due to the increase of
effective inertia of the fluid—particle mixture balances, in terms of St number, the stabilization
effect due to enhanced viscous dissipation around particles. An alternative interpretation of these
competing effects in terms of interphase energy transfer can be found in Tong and Wang (1999)



1194 J. DeSpirito, L.-.P. Wang | International Journal of Multiphase Flow 27 (2001) 1179-1198

(@)

(b)

()

Fig. 10. Visualizations of gas vorticity (a), particle velocity divergence (b), and perturbation concentration (c) fields
with o = 2.0, Re = 500, St = 1.0, Z = 1, and r(/0 = 2.825.

for the mixing layer flow. They found that while the gas phase lost energy as a result of augmented
viscous dissipations due to the addition of particles at intermediate to large St numbers, the gas
phase can gain energy from the particulate phase at small St numbers. Given the qualitatively
similar results for the jet and mixing layer, we expect to find the similar interphase energy transfer
pattern in particle-laden jets.

5. Summary

We have performed a stability analysis of a temporally evolving particle-laden jet, through
numerical simulations equivalent to solving the Orr—Sommerfeld equation of the two-phase flow.
The novel solution scheme of Verzicco and Orlandi (1996) has been successfully extended to
particle-laden flows in cylindrical coordinates, allowing a study of both linear instability in this
paper and non-linear instability in the future.
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Fig. 12. Comparison of the numerical results with Saffman’s theory at the small Stokes number limit (St = 0.01) with
Re =500, o = 2.0, and ry/0 = 2.825.

Our study extends the work of Tong and Wang (1999) on the stability of the particle-laden
mixing layer. In addition to Reynolds number, wave number, particle Stokes number and mass
loading, the jet flow stability is complicated by an additional curvature parameter, the ratio of jet
radius to shear layer thickness. Furthermore, the wave velocity will vary with these parameters.
Nevertheless, we have demonstrated that the following similar scenario holds for a particle-laden
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jet: the addition of particles can destabilize the flow at small particle Stokes number, while the
stabilizing effect prevails for intermediate to large Stokes numbers. Both these competing effects
scale approximately linearly with the particle mass loading. Consistent with the results of Sykes
and Lyell (1994) and Parthasarathy (1995), we found that the addition of particles increases the
wave velocity at large perturbation wave numbers but decreases the wave velocity for long-wave
perturbations.

The fact that the addition of particles can destabilize the gas flow in the absence of gravity has
been shown to follow the original speculation of Saffman (1962). Two general asymptotic rela-
tions proposed by Saffman have been confirmed numerically for the case of the particle-laden jet.
Physically, the increase of effective inertia of the fluid—particle mixture causes a destabilization
effect while the enhanced viscous dissipation around the particles gives a stabilization effect.
Results for various mass loadings, Stokes numbers, and wave numbers show that for a given mass
loading and wave number, there is an intermediate Stokes number that corresponds to a maxi-
mum flow stability. We have shown that this Stokes number is on the order of 1 and depends
weakly on the wave number.

While the stabilizing effect of particles on the mixing layer (Michael, 1965; Yang et al., 1990;
Dimas and Kiger, 1998) and jet (Sykes and Lyell, 1994; Parthasarathy, 1995) has been well rec-
ognized, the destabilizing influence at small Stokes number discussed here and in Tong and Wang
(1999) is realized only for viscous shear flows. It should be noted that with the addition of gravity,
particles can introduce buoyancy effects which can destabilize the flow easily (Herbolzheimer,
1983; Shaqfeh and Acrivos, 1986; Borhan and Acrivos, 1988). The qualitatively different effects of
the addition of the particles on the flow instability may also be explained in terms of the particle
dissipation and effective system inertia, as well as the direction of the interphase energy transfer
(e.g., Tong and Wang, 1999).
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